- Урок 28. Нагревание проводников электрическим током. Закон Джоуля—Ленца
- Урок 29. Лампа накаливания. Электрические нагревательные приборы
- Урок 30. Короткое замыкание. Предохранители
- Урок 31. Магнитное поле
- Урок 32. Магнитное поле прямого тока. Магнитные линии
- Урок 33. Магнитное поле катушки с током. Электромагниты и их применение
- Урок 34. Постоянные магниты. Магнитное поле постоянных магнитов
- Урок 35. Магнитное поле Земли
- Урок 35. Действие магнитного поля на проводник с током. Электрический двигатель
Урок 28. Нагревание проводников электрическим током. Закон Джоуля—Ленца
Электрический ток нагревает проводник. Это явление нам хорошо известно. Объясняется оно тем, что свободные электроны в металлах или ионы в растворах солей, кислот, щелочей, перемещаясь под действием электрического поля, взаимодействуют с ионами или атомами вещества проводника и передают им свою энергию. В результате работы электрического тока внутренняя энергия проводника увеличивается.
Опыты показывают, что в неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи.
Значит, количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока.
Мы знаем, что работу тока рассчитывают по формуле
А = U*I*t.
Обозначим количество теплоты буквой Q. Согласно сказанному выше Q = А, или Q = = U*I*t.
Пользуясь законом Ома, можно количество теплоты, выделяемое проводником с током, выразить через силу тока, сопротивление участка цепи и время. Зная, что U = I*R, получим: Q = I*R*I*t, т. е.
Q = I2 * R * t.
Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.
К этому же выводу, но на основании опытов впервые пришли независимо друг от друга английский ученый Джеймс Джоуль и русский ученый Эмилий Христианович Ленц. Поэтому сформулированный выше вывод называется законом Джоуля—Ленца.Урок 29. Лампа накаливания. Электрические нагревательные приборы
Основная часть современной лампы накаливания — спираль из тонкой вольфрамовой проволоки. Вольфрам — тугоплавкий металл, его температура плавления 3387 °С. В лампе накаливания вольфрамовая спираль нагревается до 3000 °С, при такой температуре она достигает белого каления и светится ярким светом. Спираль помещают в стеклянную колбу, из которой выкачивают насосом воздух, чтобы спираль не перегорала. Но в вакууме вольфрам быстро испаряется, спираль становится тоньше и тоже сравнительно быстро перегорает. Чтобы предотвратить быстрое испарение вольфрама, современные лампы наполняют азотом, иногда инертными газами — криптоном или аргоном.
Молекулы газа препятствуют выходу частиц вольфрама из нити, т. е. препятствуют разрушению накаленной нити.
Промышленность выпускает лампы накаливания на напряжение 220 В (для осветительной сети), 50 В (для железнодорожных вагонов), 12 В (для автомобилей), 3,5 и 2,5 В (для карманных фонарей).
Выдающимся изобретением в области освещения было создание русским инженером Александром Николаевичем Лодыгиным электрической лампы накаливания. Лампу, удобную для промышленного изготовления, с угольной нитью создал американский изобретатель Томас Эдисон.
Тепловое действие тока используют в различных электронагревательных приборах и установках. В домашних условиях широко применяют электрические плитки, утюги, чайники, кипятильники. В промышленности тепловое действие тока используют для выплавки специальных сортов стали и многих других металлов, для электросварки. В сельском хозяйстве с помощью электрического тока обогревают теплицы, кормозапарники, инкубаторы, сушат зерно, приготовляют силос.
Основная часть всякого нагревательного электрического прибора — нагревательный элемент.
Нагревательный элемент представляет собой проводник с большим удельным сопротивлением, способный, кроме того, выдерживать, не разрушаясь, нагревание до высокой температуры (до 1000—1200 °С). Чаще всего для изготовления нагревательного элемента применяют сплав никеля, железа, хрома и марганца, известный под названием «нихром». Большое удельное сопротивление нихрома дает возможность изготовлять из него весьма удобные — малые по размерам — нагревательные элементы.
В нагревательном элементе проводник в виде проволоки или ленты наматывается на пластинку из жароустойчивого материала: слюды, керамики. Так, например, нагревательным элементом в электрическом утюге служит нихромовая лента, от которой нагревается нижняя часть утюга.
Урок 30. Короткое замыкание. Предохранители
Электрические цепи всегда рассчитаны на определенную силу тока. Если по этой или иной причине сила тока в цепи становится больше допустимой, то провода могут значительно нагреться, а покрывающая их изоляция — воспламениться.
Причиной значительного увеличения силы тока в сети может быть или одновременное включение мощных потребителей тока, например электрических плиток, или короткое замыкание.
Коротким замыканием называют соединение концов участка цепи проводником, сопротивление которого очень мало по сравнению с сопротивлением участка цепи.
Короткое замыкание может возникнуть, например, при ремонте проводки под током или при случайном соприкосновении оголенных проводов.
Сопротивление цепи при коротком замыкании незначительно, поэтому в цепи возникает большая сила тока, провода при этом могут сильно накалиться и стать причиной пожара. Чтобы избежать этого, в сеть включают предохранители.
Назначение предохранителей — сразу отключить линию, если сила тока вдруг окажется больше допустимой нормы. Они защищают электроприбоpы от выхода из строя при перегрузках в электрической сети.
Предохранители устанавливают на входе электрических и радиоприборов и установок. Они обычно изготавливаются из медной проволоки, покрытой оловом. Если сила тока превысит допустимое значение, то проволока расплавится и цепь окажется разомкнутой.
Предохранители с плавящимся проводником называют плавкими предохранителями.
Предохранители, применяемые в квартирной проводке, располагают на специальном щитке, устанавливаемом у самого ввода проводов в квартиру. В каждый из проводов последовательно включают отдельный предохранитель.
Урок 31. Магнитное поле
Ранее уже были описаны различные действия электрического тока, в том числе и магнитное, которое наблюдается всегда, когда существует электрический ток. Проявляется магнитное действие, например, в том, что между проводниками с током возникают силы взаимодействия, которые называются магнитными силами. Чтобы изучить магнитное действие тока, воспользуемся магнитной стрелкой. (Она, как известно, является главной частью компаса.) Напомним, что у магнитной стрелки имеется два полюса: северный и южный. Линию, соединяющую полюсы магнитной стрелки, называют ее осью.
Магнитную стрелку ставят на острие, чтобы она могла свободно поворачиваться.
Рассмотрим теперь опыт, показывающий взаимодействие проводника с током и магнитной стрелки. Такое взаимодействие впервые обнаружил в 1820 г. датский ученый Ханс Кристиан Эрстед. Его опыт имел большое значение для развития учения об электромагнитных явлениях.
Расположим проводник, включенный в цепь источника тока, над магнитной стрелкой параллельно ее оси. При замыкании цепи магнитная стрелка отклоняется от своего первоначального положения. При размыкании цепи магнитная стрелка возвращается в свое начальное положение. Это означает, что проводник с током и магнитная стрелка взаимодействуют друг с другом.
Выполненный опыт наводит на мысль о существовании вокруг проводника с электрическим током магнитного поля. Оно и действует на магнитную стрелку, отклоняя ее.
Магнитное поле существует вокруг любого проводника с током, т. е. вокруг движущихся электрических зарядов. Электрический ток и магнитное поле неотделимы друг от друга.
Таким образом, вокруг неподвижных электрических зарядов существует только электрическое поле, вокруг движущихся зарядов, т. е. электрического тока, существует и электрическое, и магнитное поле. Магнитное поле появляется вокруг проводника, когда в последнем возникает ток, поэтому ток следует рассматривать как источник магнитного поля. В этом смысле надо понимать выражения «магнитное поле тока» или «магнитное поле, созданное током».
Урок 32. Магнитное поле прямого тока. Магнитные линии
Существование магнитного поля вокруг проводника с электрическим током можно обнаружить различными способами. Один из таких способов заключается в использовании мелких железных опилок.
В магнитном поле опилки — маленькие кусочки железа — намагничиваются и становятся магнитными стрелочками. Ось каждой стрелочки в магнитном поле устанавливается вдоль направления действия сил магнитного поля.
На рисунке изображена картина магнитного поля прямого проводника с током. Для получения такой картины прямой проводник пропускают сквозь лист картона.
На картон насыпают тонкий слой железных опилок, включают ток и опилки слегка встряхивают. Под действием магнитного поля тока железные опилки располагаются вокруг проводника не беспорядочно, а по концентрическим окружностям.
Линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок, называют магнитными линиями магнитного поля.
Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитной линии магнитного поля.Цепочки, которые образуют в магнитном поле железные опилки, показывают форму магнитных линий магнитного поля.
Магнитные линии магнитного поля тока представляют собой замкнутые кривые, охватывающие проводник. С помощью магнитных линий удобно изображать магнитные поля графически. Так как магнитное поле существует во всех точках пространства, окружающего проводник с током, то через любую точку можно провести магнитную линию.
На рисунке показано расположение магнитных стрелок вокруг проводника с током.
Урок 33. Магнитное поле катушки с током. Электромагниты и их применение
Наибольший практический интерес представляет собой магнитное поле катушки с током. На рисунке изображена катушка, состоящая из большого числа витков провода, намотанного на деревянный каркас. Когда в катушке есть ток, железные опилки притягиваются к ее концам, при отключении тока они отпадают.
Если катушку с током подвесить на тонких и гибких проводниках, то она установится так же, как магнитная стрелка компаса. Один конец катушки будет обращен к северу, другой — к югу. Значит, катушка с током, как и магнитная стрелка, имеет два полюса — северный и южный.Вокруг катушки с током имеется магнитное поле. Его, как и поле прямого тока, можно обнаружить при помощи опилок.
Магнитные линии магнитного поля катушки с током являются также замкнутыми кривыми. Принято считать, что вне катушки они направлены от северного полюса катушки к южному. Катушки с током широко используют в технике в качестве магнитов. Они удобны тем, что их магнитное действие можно изменять (усиливать или ослаблять) в широких пределах. Рассмотрим способы, при помощи которых можно это делать.
На рисунке изображен опыт, в котором наблюдается действие магнитного поля катушки с током. Если заменить катушку другой, с большим числом витков проволоки, то при той же силе тока она притянет больше железных предметов. Значит, магнитное действие катушки с током тем сильнее, чем больше число витков в ней.
Включим в цепь, содержащую катушку, реостат и при помощи него будем изменять силу тока в катушке. При увеличении силы тока действие магнитного поля катушки с током усиливается, при уменьшении — ослабляется.
Оказывается также, что магнитное действие катушки с током можно значительно усилить, не меняя число ее витков и силу тока в ней. Для этого надо ввести внутрь катушки железный стержень (сердечник). Железо, введенное внутрь катушки, усиливает магнитное действие катушки.
Катушка с железным сердечником внутри называется электромагнитом.
Электромагнит — одна из основных деталей многих технических приборов. На рисунке изображен дугообразный электромагнит удерживающий якорь (железную пластинку) с подвешенным грузом. Электромагниты широко применяют в технике благодаря их замечательным свойствам. Они быстро размагничиваются при выключении тока, в зависимости от назначения их можно изготавливать самых различных размеров, во время работы электромагнита можно регулировать его магнитное действие, меняя силу тока в катушке.
Электромагниты, обладающие большой подъемной силой, используют на заводах для переноски изделий из стали или чугуна, а также стальных и чугунных стружек, слитков. На рисунке (в) показан в разрезе магнитный сепаратор для зерна. В зерно подмешивают очень мелкие железные опилки. Эти опилки не прилипают к гладким зернам полезных злаков, но прилипают к зернам сорняков. Зерна 1 высыпаются из бункера на вращающийся барабан 2. Внутри барабана находится сильный электромагнит 5. Притягивая железные частицы 4, он извлекает зерна сорняков из потока зерна 3 и таким путем очищает зерно от сорняков и случайно попавших железных предметов.
Применяются электромагниты в телеграфном, телефонном аппаратах и во многих других устройствах.
Урок 34. Постоянные магниты. Магнитное поле постоянных магнитов
Если вставить в катушку с током стержень из закаленной стали, то в отличие от железного стержня он не размагничивается после выключения тока, а длительное время сохраняет намагниченность.
Тела, длительное время сохраняющие намагниченность, называются постоянными магнитами или просто магнитами.
Французский ученый Ампер объяснял намагниченность железа и стали существованием электрических токов, которые циркулируют внутри каждой молекулы этих веществ. Во времена Ампера о строении атома еще ничего не знали, поэтому природа молекулярных токов оставалась неизвестной. Теперь мы знаем, что в каждом атоме имеются отрицательно заряженные частицы — электроны. При движении электронов возникает магнитное поле, которое и вызывает намагниченность железа и стали.
На рисунке изображены дугообразный и полосовой магниты.
Поднося магнит к предметам, изготовленным из различных материалов, можно установить, что магнитом притягиваются очень немногие из них. Хорошо притягиваются магнитом чугун, сталь, железо и некоторые сплавы, значительно слабее никель и кобальт.
В природе встречаются естественные магниты — железная руда (так называемый магнитный железняк). Богатые залежи магнитного железняка имеются на Урале, на Украине, в Карелии, Курской области и во многих других местах.
Железо, сталь, никель, кобальт и некоторые другие сплавы в присутствии магнитного железняка приобретают магнитные свойства. Магнитный железняк позволил людям впервые ознакомиться с магнитными свойствами тел.
Перечислим основные из этих свойств.
Если магнитную стрелку приблизить к другой такой же стрелке, то они повернутся и установятся друг против друга противоположными полюсами.
Так же взаимодействует стрелка и с любым магнитом.
Поднося к полюсам магнитной стрелки магнит, можно заметить, что северный полюс стрелки отталкивается от северного полюса магнита и притягивается к южному полюсу. Южный полюс стрелки отталкивается от южного полюса магнита и притягивается северным полюсом.
На основании описанных опытов можно сделать следующее заключение: разноименные магнитные полюсы притягиваются, одноименные отталкиваются. Это правило относится и к электромагнитам.
Взаимодействие магнитов объясняется тем, что вокруг любого магнита имеется магнитное поле. Магнитное поле одного магнита действует на другой магнит, и, наоборот, магнитное поле второго магнита действует на первый.
С помощью железных опилок можно получить представление о виде магнитного поля постоянных магнитов.
Как магнитные линии магнитного поля тока, так и магнитные линии магнитного поля магнита — замкнутые линии. Вне магнита магнитные линии выходят из северного полюса магнита и входят в южный, замыкаясь внутри магнита, так же как магнитные линии катушки с током.
На рисунке (a) показаны магнитные линии магнитного поля двух магнитов, обращенных друг к другу одноименными полюсами, а на рисунке (б) — двух магнитов, обращенных друг к другу разноименными полюсами. Все описанные выше картины можно легко получить на опыте.
Урок 35. Магнитное поле Земли
С глубокой древности известно, что магнитная стрелка, свободно вращающаяся вокруг вертикальной оси, всегда устанавливается в данном месте Земли в определенном направлении (если вблизи нее нет магнитов, проводников с током, железных предметов). Этот факт объясняется тем, что вокруг Земли существует магнитное поле и магнитная стрелка устанавливается вдоль его магнитных линий. На этом и основано применение компаса, который представляет собой свободно вращающуюся на оси магнитную стрелку.
Наблюдения показывают, что при приближении к Северному гео-графическому полюсу Земли магнитные линии магнитного поля Земли всё под большим углом наклоняются к горизонту и около 75° северной широты и 99° западной долготы становятся вертикальными, входя в Землю.
Таким образом, магнитные полюсы Земли не совпадают с ее географическими полюсами. В связи с этим направление магнитной стрелки не совпадает с направлением географического меридиана. Поэтому магнитная стрелка компаса лишь приблизительно показывает направление на север.
Иногда внезапно возникают так называемые магнитные бури, кратковременные изменения магнитного поля Земли, которые сильно влияют на стрелку компаса. Наблюдения показывают, что появление магнитных бурь связано с солнечной активностью.
В период усиления солнечной активности с поверхности Солнца в мировое пространство выбрасываются потоки заряженных частиц, электронов и протонов. Магнитное поле, образуемое этими движущимися частицами, изменяет магнитное поле Земли и вызывает магнитную бурю.
Магнитные бури — явление кратковременное. Но на земном шаре встречаются области, в которых направление магнитной стрелки постоянно отклонено от направления магнитной линии Земли. Такие области называют областями магнитной аномалии (лат. слово, означает «отклонение, ненормальность»).
Одна из самых больших магнитных аномалий — Курская магнитная аномалия. Причиной таких аномалий являются огромные залежи железной руды на сравнительно небольшой глубине.
Земной магнетизм еще окончательно не объяснен. Установлено только, что большую роль в изменении магнитного поля Земли играют разнообразные электрические токи, текущие как в атмосфере (особенно в верхних ее слоях), так и в земной коре.
Большое внимание изучению магнитного поля Земли уделяют при полетах искусственных спутников и космических кораблей.
Установлено, что земное магнитное поле надежно защищает поверхность Земли от космического излучения, действие которого на живые организмы разрушительно. В состав космического излучения, кроме электронов, протонов, входят и другие частицы, движущиеся в пространстве с огромными скоростями.
Полеты межпланетных космических станций и космических кораблей на Луну и вокруг Луны позволили установить отсутствие у нее магнитного поля. Исследования, проведенные космическими кораблями, не обнаружили магнитного поля у планеты Венера, у планеты Марс имеется слабое магнитное поле.
Урок 36. Действие магнитного поля на проводник с током. Электрический двигатель
Мы знаем, что проводники с токами взаимодействуют друг с другом с некоторой силой. Это объясняется тем, что на каждый проводник с током действует магнитное поле тока другого проводника.
Вообще магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.
На рисунке изображен проводник АВ, подвешенный на гибких проводах, которые присоединены к источнику тока. Проводник АВ помещен между полюсами дугообразного магнита, т. е. находится в магнитном поле. При замыкании электрической цепи проводник приходит в движение (рис. 114).
Практически важное значение имеет вращение проводника с током в магнитном поле.
На рисунке 115 изображен прибор, с помощью которого можно продемонстрировать такое движение. В этом приборе легкая прямоугольная рамка АВСИ насажена на вертикальную ось. На рамке уложена обмотка, состоящая из нескольких десятков витков проволоки, покрытой изоляцией. Концы обмотки присоединены к металлическим полукольцам 2: один конец обмотки присоединен к одному полукольцу, другой — к другому. Каждое полукольцо прижимается к металлической пластинке — щетке 1. Щетки служат для подвода тока от источника к рамке. Одна щетка всегда соединена с положительным полюсом источника, а другая — с отрицательным.
Мы знаем, что ток в цепи направлен от положительного полюса источника к отрицательному, следовательно, в частях рамки АВ и БС он имеет противоположное направление, поэтому эти части проводника будут перемещаться в противоположные стороны и рамка повернется. При повороте рамки присоединенные к ее концам полукольца повернутся вместе с ней и каждое прижмется к другой щетке, поэтому ток в рамке изменит направление на противоположное. Это нужно для того, чтобы рамка продолжала вращаться в том же направлении.
Вращение катушки с током в магнитном поле используется в устройстве электрического двигателя.
В технических электродвигателях обмотка состоит из большого числа витков проволоки. Эти витки укладывают в пазы (прорези), сделанные вдоль боковой поверхности железного цилиндра.
Этот цилиндр нужен для усиления магнитного поля. Магнитное поле, в котором вращается якорь такого двигателя, создается сильным электромагнитом. Электромагнит питается током от того же источника тока, что и обмотка якоря.
Вал двигателя, проходящий по центральной оси железного цилиндра, соединяют с прибором, который приводится двигателем во вращение. Двигатели постоянного тока нашли особенно широкое применение на транспорте (электровозы, трамваи, троллейбусы).
Есть специальные безыскровые электродвигатели, которые применяют в насосах для выкачивания нефти из скважин.
В промышленности применяют двигатели, работающие на переменном токе (их вы будете изучать в старших классах).
Электрические двигатели обладают рядом преимуществ. При одинаковой мощности они имеют меньшие размеры, чем тепловые двигатели. При работе они не выделяют газов, дыма и пара, а значит, не загрязняют воздух. Им не нужен запас топлива и воды. Электродвигатели можно установить в удобном месте: на станке, под полом трамвая, на тележке электровоза. Можно изготовить электрический двигатель любой мощности: от нескольких ватт (в электробритвах), до сотен и тысяч киловатт (на экскаваторах, прокатных станах, кораблях).
Коэффициент полезного действия мощных электрических двигателей достигает 98%. Такого высокого КПД не имеет никакой другой двигатель. Один из первых в мире электрических двигателей, пригодных для практического применения, был изобретен русским ученым Борисом Семеновичем Якоби в 1834 г.